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Abstract
We describe a method of obtaining a conductivity formula which incorporates
the relaxation functions in a quasi-two-dimensional system. A parabolic
confinement potential is adopted. We derive the relaxation function using
projectors. We expand the propagators via the series expansion of the diagonal
projectors and obtain useful relations enabling one to calculate the relaxation
functions.

PACS numbers: 72.20.-i, -2.50.-r, 05.30.-d

1. Introduction

It is well known that the dynamical transition behaviour of a semiconductor is characterized
by the relaxation mechanism of the system. The main purpose of this work is to investigate
the effect of the induced current due to polarizability on the transition mechanism when an
external field is applied on a semiconductor. Several theories of quantum statistical mechanical
approaches have been reported so far [1–12]. Also there are many perturbative expansion
methods such as projection techniques [3–7, 9–12]. Compared with many other perturbative
expansion methods, the projection operator technique is useful for the explanation of quantum
phenomena of a semiconductor.

In recent years, in conjunction with the growth of solid-state technology, the behaviour
of electrons in solids has received a great deal of attention. For the behaviour of electrons,
the study of transport phenomena based on the conductivity formalism is known to be one of
the most popular fields for the investigation of the microscopic scattering mechanism. Among
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0305-4470/01/449569+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK 9569

http://stacks.iop.org/ja/34/9569


9570 Joung Young Sug et al

many approaches we are interested in the projection technique, which produces an elegant
formalism using projectors [3–7, 9–12].

The study of low-dimensional electron systems is of great importance in semiconductor
physics at the present time. Theoretical studies of cyclotronic transitions in quasi-two-
dimensional quantum-well structures have been in active progress over the last few years.
The quantum well is a system in which the electron motion is restricted in one direction,
thus producing quantum confinement. This is realized in silicon-based MOS structures
with quantum wells formed at the semiconductor boundary and in single GaAs/AlxGa1−xAs
heterojunctions, where the quantum well is created in the GaAs layer at the heterojunction
boundary. We are interested in the confinement of electrons by parabolic potentials. To our
knowledge, although the theories reported so far have been based on a rigorous statistical
quantum mechanical methodology, they are limited in the sense that many-body effects are
mainly treated at the first quantized level.

Here, we introduce a method of deriving the conductivity formula which includes the
relaxation functions in a quasi-two-dimensional system. We use an operator algebra technique
based on the second quantization formalism for the expansion of the propagators which are
included in the conductivity tensor. Using the usual projection technique, we expand the
relaxation factors contained in the conductivity tensor and obtain Lorentz-like formulae for
the conductivity. A parabolic confinement potential is adopted. We shall describe how to derive
the relaxation function using projectors [10]. We expand propagators via a series expansion
of the diagonal projectors. This method of expansion is conventional in many theories [6,10].
In our two-dimensional system, the properties of projection operators are quite different from
those of three-dimensional systems. We derive the useful relations of equation (3.14) for the
calculation of the relaxation functions. Using these relations and systematically calculating
the matrix elements, we obtain a conductivity formalism which incorporates the relaxation
function.

2. Review of the conductivity formula

We suppose that a linearly polarized electric field, �E(t) = E0ẑ[exp(iωt)+exp(−iωt)], applied
along the z-axis, gives the optical absorption power

P(ω) = E2
0

2
Re [σzz(ω)]

where ‘Re’ denotes ‘the real part of’ and σzz(ω) is the optical conductivity tensor [7].
We consider a system of electrons interacting weakly with a background of phonons and

confined in a parabolic well with a characteristic frequency of ω0. We choose a parabolic
potential because it is well analysed and easy to handle. Then, the induced conductivity is
given by [10]

σzz(ω̄) =
∑
α

(
i

ω̄

)
jα〈Z(ω̄)〉α +

∑
α

(
i

ω̄

)
j ∗
α 〈〈Z(ω̄)〉〉α (2.1)

where

Z(ω) = (h̄ω̄ − L)−1Jz (2.2)

and

〈X〉α ≡ TR{ρ[X, a+
αaα+1]}

〈〈X〉〉α ≡ TR{ρ[X, a+
α+1aα]}. (2.3)
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The system Hamiltonian is

H = He + Hp + V =
∑
α,β

〈α|he|β〉a+
αaβ +

∑
q

h̄ωqb
+
qbq +

∑
q

∑
κ,λ

vκλ(q)a
+
κ aλ(bq + b−q+)

(2.4)

L = Le + Lp + Lv. (2.5)

Here ω̄ = ω + iη and L is the Liouville operator corresponding to the Hamiltonian H . ρ is
the equilibrium density matrix of the system, TR denotes the many-body trace, |α〉 and |β〉 are
the electron state vectors characterized by proper quantum numbers, q ≡ (�q, s), �q being the
phonon wavevector and s the polarization index, h̄ωq is the phonon energy and v(q) is the
electron–phonon couping factor. a+

β (aβ) creates (annihilates) an electron in the state β and
b+
q (bq) creates (annihilates) a phonon in the state q. Now we consider a system of electrons

confined in a parabolic quantum well with characteristic frequency ω0 in the z-direction. The
Hamiltonian of the single electron is chosen as

he = − h̄2∇2

2m
+

1

2
mω2

0z
2. (2.6)

Then the energy eigenvalue Eα and the eigenstate |α, k〉, α being the quantum number, are
given by

Eα = (α + 1/2)h̄ω0 +
h̄2(k2

x + k2
y)

2m
(2.7)

|α, k〉 = 'α,k =
(mω0

πh̄

)1/2
(2αα!)−1/2exp(ikxx + ikyy)exp

(
−mω0

2h̄
z2

)
Hα

(√
mω0

h̄
z

)
(2.8)

where Hα(x) are the Hermite polynomials. The current operator of this system is given by

Jz =
∑
α

jαa
+
α+1aα +

∑
β

j ∗
αa

+
αaα+1 ≡ Jz1 + Jz2 (2.9)

where

jβ = −ie

(
h̄ωα(α + 1)

2m

)1/2

. (2.10)

3. The expansion of the propagator and the function of relaxation factors

In order to reform equation (2.1) we further introduce two sets of projectors by

PαX ≡ Jz
〈X〉α
〈Jz〉α P ′

α = 1 − Pα (3.1)

and

QαX ≡ Jz
〈〈X〉〉α
〈〈Jz〉〉α Q′

α = 1 − Qα. (3.2)

Now using the operator algebra technique the factors given in equation (2.1) can be
obtained as

〈Z(ω̄)〉α = 〈Jz〉α/h̄ω̄
1 − 〈G1LJz〉α/〈Jz〉α (3.3)

〈〈Z(ω̄)〉〉α = 〈〈Jz〉〉α/h̄ω̄
1 − 〈〈G1LJz〉〉α/〈〈Jz〉〉α (3.4)

where G1 is a new propagator defined by

G1 = (h̄ω̄ − LP ′
α)

−1. (3.5)
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The properties of these operators are quite different from those of the three-dimensional
cases, namely

LdJz =
∑
α

[h̄ωαJz − 2h̄ωαj
∗
αa

+
αaα+1] (3.6)

and

P ′LdJz �= 0. (3.7)

Note that equation (3.6) for three-dimensional cases is much simpler than that for two-
dimensional cases, so we split the Liouville operators appearing in the denominators into
the diagonal part Ld and the interaction part Lv . Then we have

〈G1LJz〉 = 〈G1LdJz〉 + 〈G1LvJz〉 (3.8a)

and

〈〈G1LJz〉〉 = 〈〈G1LdJz〉〉 + 〈〈G1LvJz〉〉. (3.8b)

We expand the propagatorG1 using the conventional expansion method as in quantum transport
theories [6, 10], so that

G1 = G2

∞∑
l=0

((LvP
′
α)G2)

l (3.9)

where the propagator G2 is defined by

G2 = (h̄ω̄ − LdP
′
α)

−1

which can be expanded as

G2 =
∞∑
r=0

(
1

h̄ω̄

)r+1

(LdP
′
α)

r .

If we assume that the coupling is extremely weak, and dominated by pair interaction
between electrons and phonons, than we have

〈LdP
′X〉α = 0 (3.10)

and

〈YLdJz1〉α = δEα〈YJz1〉α
〈YLdJz2〉α = −δEα〈YJz2〉α
〈YP ′LdJz〉α = −2δEα〈YJz2〉α
〈YP ′LdJz2〉α = 〈YLdJz2〉α

(3.11)

where X and Y are arbitrary operators. We note that the relation (3.10) simplifies the
calculations of the relaxation function for this system. As far as the operation of 〈〈· · ·〉〉 is
concerned, we obtain similar relations. Using these relations, equations (3.10) and (3.11) and
the relation

〈MPαLvD〉 = 〈MJz〉〈LvD〉/〈Jz〉 = 0

where M is an arbitrary operator and D is an arbitrary diagonal operator, and applying the
projection operator systematically, we may derive useful relations as follows:

〈G1LdJz〉α =
(

1

h̄ω̄

)
〈LdJz〉α − 2

∞∑
r=0

(
1

h̄ω̄

)r+1

〈LvGrLvL
r
dJz2〉δEα (3.12a)
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and

〈〈G1LdJz〉〉α =
(

1

h̄ω̄

)
〈〈LdJz〉〉α + 2

∞∑
r=0

(
1

h̄ω̄

)r+1

〈〈LvGrLvL
r
dJz1〉〉δEα (3.12b)

where a propagator Gr is defined by

Gr = (h̄ω̄ − Ld)
−1 (3.13)

which can be expanded as Gr = ∑∞
r=0(1/h̄ω̄)

(r+1)(Ld)
r . We can also write

〈G1LvJz〉 = 〈LvGrLvJz〉 (3.14a)

and

〈〈G1LvJz〉〉 = 〈〈LvGrLvJz〉〉. (3.14b)

In order to calculate the matrix elements, we use the anticommutation relations of fermions
(electrons) and commutation relations of bosons (phonons). Using the relation

〈(bl + b+
−l)(bq + b+

−q)〉p = 〈(bq + b+
−q)(bl + b+

−l)〉p = {Nq + (Nq + 1)}δl,−q ≡ Ñ (3.15)

where Nq is the phonon distribution, and assuming weak interactions, we may take

〈[a+
ν aκ(bl + b+

−l), a
+
µaα+1(bq + b+

−q)]〉p = [a+
ν aκ, a

+
µaα+1]〈(bl + b+

−l)(bq + b+
−q)〉p. (3.16)

Now we shall evaluate 〈G1LdJz〉α , 〈G1LvJz〉α , 〈〈G1LdJz〉〉α and 〈〈G1LvJz〉〉α using the
matrix elements

〈jz1〉 =
∑
α

jα+1δfα

〈〈jz2〉〉 =
∑
α

jα(−δfα)

〈Ldjz1〉 =
∑
α

jα+1δEαδfα

〈〈Ldjz2〉〉 =
∑
α

jα(−δEα)(−δfα)

〈jz2〉 = 〈Ldjz2〉 = 〈〈jz1〉〉 = 〈〈Ldjz1〉〉 = 0

〈LvGrLvL
m
d jz1〉 =

∑
α

∑
q

Ỹ 1
1 (q)δE

m
α δfαÑq

〈LvGrLvL
m
d jz2〉 =

∑
α

∑
q

Ỹ 1
2 (q)(−δEα)

mδfαÑq

〈〈LvGrLvL
m
d jz1〉〉 =

∑
α

∑
q

Ỹ 1
3 (q)δE

m
α (−δfα)Ñq

〈〈LvGrLvL
m
d jz2〉〉 =

∑
α

∑
q

Ỹ 1
4 (q)(−δEα)

m(−δfα)Ñq .

(3.17)

Here we use the following abbreviations:

Ỹ 1
1 (q) ≡

∑
µ

jαvα+1,µ(l)vµ,α+1(q)(h̄ω̄ − εµ + εα − h̄ωq)
−1

−jαvα,α(l)vα+1,α+1(q)(h̄ω̄ − εα+1 + εα + h̄ωq)
−1

−jαvα+1,α+1(l)vα,α(q)(h̄ω̄ − εα+1 + εα − h̄ωq)
−1

+
∑
µ

jαvµ,α(l)vα,µ(q)(h̄ω̄ − εα+1 + εµ + h̄ωq)
−1 (3.18)

Ỹ 1
2 (q) ≡ −j ∗

αvα+1,α(l)vα+1,α(q)(h̄ω̄ + h̄ωq)
−1 − j ∗

αvα+1,α(l)vα+1,α(q)(h̄ω̄ − h̄ωq)
−1 (3.19)

Ỹ 1
3 (q) ≡ −jαvα,α+1(l)vα,α+1(q)(h̄ω̄ + h̄ωq)

−1 − jαvα+1,α(l)vα,α+1(q)(h̄ω̄ − h̄ωq)
−1 (3.20)
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Ỹ 1
4 (q) ≡

∑
µ

j ∗
αvα,µ(l)vµ,α(q)(h̄ω̄ − εµ + εα+1 − h̄ωq)

−1

−j ∗
αvα+1,α+1(l)vα,α(q)(h̄ω̄ − εα + εα+1 + h̄ωq)

−1

−j ∗
αvα,α(l)vα+1,α+1(q)(h̄ω̄ − εα + εα+1 − h̄ωq)

−1

+
∑
µ

j ∗
αvµ,α+1(l)vα+1,µ(q)(h̄ω̄ − εα + εµ + h̄ωq)

−1 (3.21)

where δEα ≡ (εα+1−εα) and δfα ≡ (fα+1−fα); fα is the Fermi distribution. We substitute the
above elements into equations (3.12) and (3.14), and obtain the conductivity and the functions
of the relaxation factors, as

σzz(ω̄) =
∑
α

(
i

ω̄

)
jα〈Z(ω̄)〉α +

∑
α

(
i

ω̄

)
j ∗
α 〈〈Z(ω̄)〉〉α (3.22)

〈Z(ω)〉α = jαδfα

h̄(ω̄ − ωα) + h̄ω̄7P

(3.23)

〈〈Z(ω)〉〉α = −j ∗
α δfα

h̄(ω̄ + ωα) + h̄ω̄7Q

(3.24)

where

7P =
∑
q

1

jα

{
2

(
1

h̄ω̄

)3

[−2j ∗
αvα,α+1(q)vα,α+1(q)]δEα

−2
(1/h̄ω̄)2δE2

α

h̄ω̄ + δEα

[
−j ∗

αvα+1,α(q)vα+1,α(q)

h̄ω̄ + h̄ωq

− j ∗
αvα+1,α(q)vα+1,α(q)

h̄ω̄ − h̄ωq

]

+

(
1

h̄ω̄

) ∑
µ

jαvα+1,µ(q)vµ,α+1(q)

h̄ω̄ − εµ + εα − h̄ωq

−
(

1

h̄ω̄

)
jαvα,α(q)vα+1,α+1(q)

h̄ω − εα+1 + εα + h̄ωq

−
(

1

h̄ω̄

)
jαvα+1,α+1(q)vα,α(q)

h̄ω − εα+1 + εα − h̄ωq

+

(
1

h̄ω̄

) ∑
µ

jαvµ,α(l)vα,µ(q)

h̄ω̄ − εα+1 + εµ + h̄ωq

−
(

1

h̄ω̄

)
j ∗
αvα+1,α(q)vα+1,α(q)

h̄ω̄ + h̄ωq

−
(

1

h̄ω̄

)
j ∗
αvα+1,α(q)vα+1,α(q)

h̄ω̄ − h̄ωq

}
Ñq

(3.25)

and

7Q =
∑
q

∑
α

1

j ∗
α

{
2

(
1

h̄ω̄

)3

[−2jαvα,α+1(q)vα,α+1(q)]δEα

+2
(1/h̄ω̄)2δE2

α

h̄ω̄ + δEα

[
−jαvα,α+1(q)vα,α+1(q)

h̄ω̄ − h̄ωq

− jαvα,α+1(q)vα,α+1(q)

h̄ω̄ − h̄ωq

]

+

(
1

h̄ω̄

) ∑
µ

j ∗
αvα,µ(q)vµ,α(q)

h̄ω̄ − εµ + εα+1 − h̄ωq

−
(

1

h̄ω̄

)
j ∗
αvα+1,α+1(q)vα,α(q)

h̄ω̄ − εα + εα+1 + h̄ωq

−
(

1

h̄ω̄

)
j ∗
αvα,α(q)vα+1,α+1(q)

h̄ω̄ − εα + εα+1 − h̄ωq

+

(
1

h̄ω̄

) ∑
µ

j ∗
αvµ,α+1(q)vα+1,µ(q)

h̄ω̄ − εα + εµ + h̄ωq

−
(

1

h̄ω̄

)
jαvα,α+1(q)vα,α+1(q)

h̄ω̄ + h̄ωq

−
(

1

h̄ω̄

)
jαvα,α+1(q)vα,α+1(q)

h̄ω̄ − h̄ωq

}
Ñq .

(3.26)

Here 7P and 7Q are functions of the lineshape which contain the line shift and line half width
in a resonant system. The first, second, seventh and eighth terms of equations (3.25) and (3.26)
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do not appear in other theories [6,10]. These correction terms may give rise to some interesting
effects, particularly in a low-dimensional quantum system.

4. Conclusion

In this paper, we have introduced a method of deriving a conductivity formula which includes
the relaxation function in a quasi-two-dimensional system. We used an operator algebra
technique for the expansion of the propagators which are included in the conductivity tensor.
Following the usual projection technique, we expanded the relaxation factors contained in
the conductivity tensor with the help of projectors and obtained Lorentz-like formulae. A
parabolic confinement potential was chosen.

We showed how to calculate the relaxation function using projectors. We expanded the
propagators via a series of diagonal projectors as is commonly performed in quantum transport
theories [6, 10]. The properties of the projection operators in this system are quite different
from the case of three-dimensional conductivity.

Through systematically using projection operators, we have derived the useful relation of
equation (3.12). Using this relation and systematically calculating the matrix elements, we
obtained a conductivity formalism comprising functions of relaxation factors. These functions
contain the line shift and line half width in the resonant system. The first, second, seventh
and eighth terms of equations (3.25) and (3.26) do not appear in other theories [10]. These
terms are expected to play an effective role in low-dimensional quantum systems. The origin
of these terms is from the properties of our projection operators in this system.
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