Theory of conductivity in a quasi-two-dimensional system based on operator algebra technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2001 J. Phys. A: Math. Gen. 349569
(http://iopscience.iop.org/0305-4470/34/44/315)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:23

Please note that terms and conditions apply.

Theory of conductivity in a quasi-two-dimensional system based on operator algebra technique

Joung Young Sug ${ }^{1}$, Sang Gyu Jo ${ }^{2}$, Youn Ju Lee ${ }^{2}$, Hyun Jung Lee ${ }^{2}$, Sang Don Choi ${ }^{2,5}$, Nam Lyong Kang ${ }^{3}$ and Jangil Kim ${ }^{4}$
${ }^{1}$ Electronic and Electric Engineering School, Kyungpook National University, Taegu 702-701, Korea
${ }^{2}$ Department of Physics, Kyungpook National University, Taegu 702-701, Korea
${ }^{3}$ Faculty of Liberal Arts, Miryang National University, Miryang, 627-702, Korea
${ }^{4}$ Department of Physics, Changwoon National University, Changwoon 643-773, Seoul, Korea
E-mail: sdchoi@knu.ac.kr

Received 5 June 2001, in final form 6 September 2001
Published 26 October 2001
Online at stacks.iop.org/JPhysA/34/9569

Abstract

We describe a method of obtaining a conductivity formula which incorporates the relaxation functions in a quasi-two-dimensional system. A parabolic confinement potential is adopted. We derive the relaxation function using projectors. We expand the propagators via the series expansion of the diagonal projectors and obtain useful relations enabling one to calculate the relaxation functions.

PACS numbers: 72.20.-i, -2.50.-r, 05.30.-d

1. Introduction

It is well known that the dynamical transition behaviour of a semiconductor is characterized by the relaxation mechanism of the system. The main purpose of this work is to investigate the effect of the induced current due to polarizability on the transition mechanism when an external field is applied on a semiconductor. Several theories of quantum statistical mechanical approaches have been reported so far [1-12]. Also there are many perturbative expansion methods such as projection techniques [3-7,9-12]. Compared with many other perturbative expansion methods, the projection operator technique is useful for the explanation of quantum phenomena of a semiconductor.

In recent years, in conjunction with the growth of solid-state technology, the behaviour of electrons in solids has received a great deal of attention. For the behaviour of electrons, the study of transport phenomena based on the conductivity formalism is known to be one of the most popular fields for the investigation of the microscopic scattering mechanism. Among
${ }^{5}$ Corresponding author.
many approaches we are interested in the projection technique, which produces an elegant formalism using projectors [3-7,9-12].

The study of low-dimensional electron systems is of great importance in semiconductor physics at the present time. Theoretical studies of cyclotronic transitions in quasi-twodimensional quantum-well structures have been in active progress over the last few years. The quantum well is a system in which the electron motion is restricted in one direction, thus producing quantum confinement. This is realized in silicon-based MOS structures with quantum wells formed at the semiconductor boundary and in single $\mathrm{GaAs} / \mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$ heterojunctions, where the quantum well is created in the GaAs layer at the heterojunction boundary. We are interested in the confinement of electrons by parabolic potentials. To our knowledge, although the theories reported so far have been based on a rigorous statistical quantum mechanical methodology, they are limited in the sense that many-body effects are mainly treated at the first quantized level.

Here, we introduce a method of deriving the conductivity formula which includes the relaxation functions in a quasi-two-dimensional system. We use an operator algebra technique based on the second quantization formalism for the expansion of the propagators which are included in the conductivity tensor. Using the usual projection technique, we expand the relaxation factors contained in the conductivity tensor and obtain Lorentz-like formulae for the conductivity. A parabolic confinement potential is adopted. We shall describe how to derive the relaxation function using projectors [10]. We expand propagators via a series expansion of the diagonal projectors. This method of expansion is conventional in many theories $[6,10]$. In our two-dimensional system, the properties of projection operators are quite different from those of three-dimensional systems. We derive the useful relations of equation (3.14) for the calculation of the relaxation functions. Using these relations and systematically calculating the matrix elements, we obtain a conductivity formalism which incorporates the relaxation function.

2. Review of the conductivity formula

We suppose that a linearly polarized electric field, $\vec{E}(t)=E_{0} \hat{z}[\exp (\mathrm{i} \omega t)+\exp (-\mathrm{i} \omega t)]$, applied along the z-axis, gives the optical absorption power

$$
P(\omega)=\frac{E_{0}^{2}}{2} \operatorname{Re}\left[\sigma_{z z}(\omega)\right]
$$

where ' Re ' denotes 'the real part of' and $\sigma_{z z}(\omega)$ is the optical conductivity tensor [7].
We consider a system of electrons interacting weakly with a background of phonons and confined in a parabolic well with a characteristic frequency of ω_{0}. We choose a parabolic potential because it is well analysed and easy to handle. Then, the induced conductivity is given by [10]

$$
\begin{equation*}
\sigma_{z z}(\bar{\omega})=\sum_{\alpha}\left(\frac{\mathrm{i}}{\bar{\omega}}\right) j_{\alpha}\langle Z(\bar{\omega})\rangle_{\alpha}+\sum_{\alpha}\left(\frac{\mathrm{i}}{\bar{\omega}}\right) j_{\alpha}^{*}\langle\langle Z(\bar{\omega})\rangle\rangle_{\alpha} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Z(\omega)=(\hbar \bar{\omega}-L)^{-1} J_{z} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& \langle X\rangle_{\alpha} \equiv T_{R}\left\{\rho\left[X, a_{\alpha}^{+} a_{\alpha+1}\right]\right\} \\
& \langle\langle X\rangle\rangle_{\alpha} \equiv T_{R}\left\{\rho\left[X, a_{\alpha+1}^{+} a_{\alpha}\right]\right\} . \tag{2.3}
\end{align*}
$$

The system Hamiltonian is
$H=H_{e}+H_{p}+V=\sum_{\alpha, \beta}\langle\alpha| h_{e}|\beta\rangle a_{\alpha}^{+} a_{\beta}+\sum_{q} \hbar \omega_{q} b_{q}^{+} b_{q}+\sum_{q} \sum_{\kappa, \lambda} v_{\kappa \lambda}(q) a_{\kappa}^{+} a_{\lambda}\left(b_{q}+b_{-} q^{+}\right)$
$L=L_{e}+L_{p}+L_{v}$.
Here $\bar{\omega}=\omega+\mathrm{i} \eta$ and L is the Liouville operator corresponding to the Hamiltonian H. ρ is the equilibrium density matrix of the system, T_{R} denotes the many-body trace, $|\alpha\rangle$ and $|\beta\rangle$ are the electron state vectors characterized by proper quantum numbers, $q \equiv(\vec{q}, s), \vec{q}$ being the phonon wavevector and s the polarization index, $\hbar \omega_{q}$ is the phonon energy and $v(q)$ is the electron-phonon couping factor. $a_{\beta}^{+}\left(a_{\beta}\right)$ creates (annihilates) an electron in the state β and $b_{q}^{+}\left(b_{q}\right)$ creates (annihilates) a phonon in the state q. Now we consider a system of electrons confined in a parabolic quantum well with characteristic frequency ω_{0} in the z-direction. The Hamiltonian of the single electron is chosen as

$$
\begin{equation*}
h_{e}=-\frac{\hbar^{2} \nabla^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} z^{2} \tag{2.6}
\end{equation*}
$$

Then the energy eigenvalue E_{α} and the eigenstate $|\alpha, k\rangle, \alpha$ being the quantum number, are given by
$E_{\alpha}=(\alpha+1 / 2) \hbar \omega_{0}+\frac{\hbar^{2}\left(k_{x}^{2}+k_{y}^{2}\right)}{2 m}$
$|\alpha, k\rangle=\Psi_{\alpha, k}=\left(\frac{m \omega_{0}}{\pi \hbar}\right)^{1 / 2}\left(2^{\alpha} \alpha!\right)^{-1 / 2} \exp \left(\mathrm{i} k_{x} x+\mathrm{i} k_{y} y\right) \exp \left(-\frac{m \omega_{0}}{2 \hbar} z^{2}\right) H_{\alpha}\left(\sqrt{\frac{m \omega_{0}}{\hbar}} z\right)$
where $H_{\alpha}(x)$ are the Hermite polynomials. The current operator of this system is given by

$$
\begin{equation*}
J_{z}=\sum_{\alpha} j_{\alpha} a_{\alpha+1}^{+} a_{\alpha}+\sum_{\beta} j_{\alpha}^{*} a_{\alpha}^{+} a_{\alpha+1} \equiv J_{z 1}+J_{z 2} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{\beta}=-\mathrm{i} e\left(\frac{\hbar \omega_{\alpha}(\alpha+1)}{2 m}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

3. The expansion of the propagator and the function of relaxation factors

In order to reform equation (2.1) we further introduce two sets of projectors by

$$
\begin{equation*}
P_{\alpha} X \equiv J_{z} \frac{\langle X\rangle_{\alpha}}{\left\langle J_{z}\right\rangle_{\alpha}} \quad P_{\alpha}^{\prime}=1-P_{\alpha} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\alpha} X \equiv J_{z} \frac{\left\langle\langle X\rangle_{\alpha}\right.}{\left\langle\left\langle J_{z}\right\rangle_{\alpha}\right.} \quad Q_{\alpha}^{\prime}=1-Q_{\alpha} \tag{3.2}
\end{equation*}
$$

Now using the operator algebra technique the factors given in equation (2.1) can be obtained as

$$
\begin{align*}
\langle Z(\bar{\omega})\rangle_{\alpha} & =\frac{\left\langle J_{z}\right\rangle_{\alpha} / \hbar \bar{\omega}}{1-\left\langle G_{1} L J_{z}\right\rangle_{\alpha} /\left\langle J_{z}\right\rangle_{\alpha}} \tag{3.3}\\
\left\langle\langle Z(\bar{\omega})\rangle_{\alpha}\right. & =\frac{\left\langle\left\langle J_{z}\right\rangle_{\alpha} / \hbar \bar{\omega}\right.}{1-\left\langle\left\langle G_{1} L J_{z}\right\rangle_{\alpha} /\left\langle\left\langle J_{z}\right\rangle_{\alpha}\right.\right.} \tag{3.4}
\end{align*}
$$

where G_{1} is a new propagator defined by

$$
\begin{equation*}
G_{1}=\left(\hbar \bar{\omega}-L P_{\alpha}^{\prime}\right)^{-1} \tag{3.5}
\end{equation*}
$$

The properties of these operators are quite different from those of the three-dimensional cases, namely

$$
\begin{equation*}
L_{d} J_{z}=\sum_{\alpha}\left[\hbar \omega_{\alpha} J_{z}-2 \hbar \omega_{\alpha} j_{\alpha}^{*} a_{\alpha}^{+} a_{\alpha+1}\right] \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime} L_{d} J_{z} \neq 0 \tag{3.7}
\end{equation*}
$$

Note that equation (3.6) for three-dimensional cases is much simpler than that for twodimensional cases, so we split the Liouville operators appearing in the denominators into the diagonal part L_{d} and the interaction part L_{v}. Then we have

$$
\begin{equation*}
\left\langle G_{1} L J_{z}\right\rangle=\left\langle G_{1} L_{d} J_{z}\right\rangle+\left\langle G_{1} L_{v} J_{z}\right\rangle \tag{3.8a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left\langle G_{1} L J_{z}\right\rangle\right\rangle=\left\langle\left\langle G_{1} L_{d} J_{z}\right\rangle\right\rangle+\left\langle\left\langle G_{1} L_{v} J_{z}\right\rangle\right\rangle . \tag{3.8b}
\end{equation*}
$$

We expand the propagator G_{1} using the conventional expansion method as in quantum transport theories $[6,10]$, so that

$$
\begin{equation*}
G_{1}=G_{2} \sum_{l=0}^{\infty}\left(\left(L_{v} P_{\alpha}^{\prime}\right) G_{2}\right)^{l} \tag{3.9}
\end{equation*}
$$

where the propagator G_{2} is defined by

$$
G_{2}=\left(\hbar \bar{\omega}-L_{d} P_{\alpha}^{\prime}\right)^{-1}
$$

which can be expanded as

$$
G_{2}=\sum_{r=0}^{\infty}\left(\frac{1}{\hbar \bar{\omega}}\right)^{r+1}\left(L_{d} P_{\alpha}^{\prime}\right)^{r}
$$

If we assume that the coupling is extremely weak, and dominated by pair interaction between electrons and phonons, than we have

$$
\begin{equation*}
\left\langle L_{d} P^{\prime} X\right\rangle_{\alpha}=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle Y L_{d} J_{z 1}\right\rangle_{\alpha}=\delta E_{\alpha}\left\langle Y J_{z 1}\right\rangle_{\alpha} \\
& \left\langle Y L_{d} J_{z 2}\right\rangle_{\alpha}=-\delta E_{\alpha}\left\langle Y J_{z 2}\right\rangle_{\alpha} \tag{3.11}\\
& \left\langle Y P^{\prime} L_{d} J_{z}\right\rangle_{\alpha}=-2 \delta E_{\alpha}\left\langle Y J_{z 2}\right\rangle_{\alpha} \\
& \left\langle Y P^{\prime} L_{d} J_{z 2}\right\rangle_{\alpha}=\left\langle Y L_{d} J_{z 2}\right\rangle_{\alpha}
\end{align*}
$$

where X and Y are arbitrary operators. We note that the relation (3.10) simplifies the calculations of the relaxation function for this system. As far as the operation of $\langle\langle\cdots\rangle\rangle$ is concerned, we obtain similar relations. Using these relations, equations (3.10) and (3.11) and the relation

$$
\left\langle M P_{\alpha} L_{v} D\right\rangle=\left\langle M J_{z}\right\rangle\left\langle L_{v} D\right\rangle /\left\langle J_{z}\right\rangle=0
$$

where M is an arbitrary operator and D is an arbitrary diagonal operator, and applying the projection operator systematically, we may derive useful relations as follows:

$$
\begin{equation*}
\left\langle G_{1} L_{d} J_{z}\right\rangle_{\alpha}=\left(\frac{1}{\hbar \bar{\omega}}\right)\left\langle L_{d} J_{z}\right\rangle_{\alpha}-2 \sum_{r=0}^{\infty}\left(\frac{1}{\hbar \bar{\omega}}\right)^{r+1}\left\langle L_{v} G_{r} L_{v} L_{d}^{r} J_{z 2}\right\rangle \delta E_{\alpha} \tag{3.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left\langle G_{1} L_{d} J_{z}\right\rangle_{\alpha}=\left(\frac{1}{\hbar \bar{\omega}}\right)\left\langle\left\langle L_{d} J_{z}\right\rangle_{\alpha}+2 \sum_{r=0}^{\infty}\left(\frac{1}{\hbar \bar{\omega}}\right)^{r+1}\left\langle\left\langle L_{v} G_{r} L_{v} L_{d}^{r} J_{z} 1\right\rangle \delta E_{\alpha}\right.\right.\right. \tag{3.12b}
\end{equation*}
$$

where a propagator G_{r} is defined by

$$
\begin{equation*}
G_{r}=\left(\hbar \bar{\omega}-L_{d}\right)^{-1} \tag{3.13}
\end{equation*}
$$

which can be expanded as $G_{r}=\sum_{r=0}^{\infty}(1 / \hbar \bar{\omega})^{(r+1)}\left(L_{d}\right)^{r}$. We can also write

$$
\begin{equation*}
\left\langle G_{1} L_{v} J_{z}\right\rangle=\left\langle L_{v} G_{r} L_{v} J_{z}\right\rangle \tag{3.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left\langle G_{1} L_{v} J_{z}\right\rangle\right\rangle=\left\langle\left\langle L_{v} G_{r} L_{v} J_{z}\right\rangle\right\rangle . \tag{3.14b}
\end{equation*}
$$

In order to calculate the matrix elements, we use the anticommutation relations of fermions (electrons) and commutation relations of bosons (phonons). Using the relation
$\left\langle\left(b_{l}+b_{-l}^{+}\right)\left(b_{q}+b_{-q}^{+}\right)\right\rangle_{p}=\left\langle\left(b_{q}+b_{-q}^{+}\right)\left(b_{l}+b_{-l}^{+}\right)\right\rangle_{p}=\left\{N_{q}+\left(N_{q}+1\right)\right\} \delta_{l,-q} \equiv \tilde{N}$
where N_{q} is the phonon distribution, and assuming weak interactions, we may take
$\left\langle\left[a_{\nu}^{+} a_{\kappa}\left(b_{l}+b_{-l}^{+}\right), a_{\mu}^{+} a_{\alpha+1}\left(b_{q}+b_{-q}^{+}\right)\right]\right\rangle_{p}=\left[a_{\nu}^{+} a_{\kappa}, a_{\mu}^{+} a_{\alpha+1}\right]\left\langle\left(b_{l}+b_{-l}^{+}\right)\left(b_{q}+b_{-q}^{+}\right)\right\rangle_{p}$.
Now we shall evaluate $\left\langle G_{1} L_{d} J_{z}\right\rangle_{\alpha},\left\langle G_{1} L_{v} J_{z}\right\rangle_{\alpha},\left\langle\left\langle G_{1} L_{d} J_{z}\right\rangle_{\alpha}\right.$ and $\left\langle\left\langle G_{1} L_{v} J_{z}\right\rangle\right\rangle_{\alpha}$ using the matrix elements

$$
\begin{align*}
& \left\langle j_{z 1}\right\rangle=\sum_{\alpha} j_{\alpha+1} \delta f_{\alpha} \\
& \left\langle\left\langle j_{z 2}\right\rangle=\sum_{\alpha} j_{\alpha}\left(-\delta f_{\alpha}\right)\right. \\
& \left\langle L_{d} j_{z 1}\right\rangle=\sum_{\alpha} j_{\alpha+1} \delta E_{\alpha} \delta f_{\alpha} \\
& \left\langle\left\langle L_{d} j_{z 2}\right\rangle\right\rangle=\sum_{\alpha} j_{\alpha}\left(-\delta E_{\alpha}\right)\left(-\delta f_{\alpha}\right) \\
& \left\langle j_{z 2}\right\rangle=\left\langle L_{d} j_{z 2}\right\rangle=\left\langle\left\langle j_{z 1}\right\rangle\right\rangle=\left\langle\left\langle L_{d} j_{z 1}\right\rangle=0\right. \tag{3.17}\\
& \left\langle L_{v} G_{r} L_{v} L_{d}^{m} j_{z 1}\right\rangle=\sum_{\alpha} \sum_{q} \tilde{Y}_{1}^{1}(q) \delta E_{\alpha}^{m} \delta f_{\alpha} \tilde{N}_{q} \\
& \left\langle L_{v} G_{r} L_{v} L_{d}^{m} j_{z 2}\right\rangle=\sum_{\alpha} \sum_{q} \tilde{Y}_{2}^{1}(q)\left(-\delta E_{\alpha}\right)^{m} \delta f_{\alpha} \tilde{N}_{q} \\
& \left\langle\left\langle L_{v} G_{r} L_{v} L_{d}^{m} j_{z 1}\right\rangle\right\rangle=\sum_{\alpha} \sum_{q} \tilde{Y}_{3}^{1}(q) \delta E_{\alpha}^{m}\left(-\delta f_{\alpha}\right) \tilde{N}_{q} \\
& \left\langle\left\langle L_{v} G_{r} L_{v} L_{d}^{m} j_{z 2}\right\rangle\right\rangle=\sum_{\alpha} \sum_{q} \tilde{Y}_{4}^{1}(q)\left(-\delta E_{\alpha}\right)^{m}\left(-\delta f_{\alpha}\right) \tilde{N}_{q}
\end{align*}
$$

Here we use the following abbreviations:

$$
\left.\begin{array}{rl}
\tilde{Y}_{1}^{1}(q) \equiv \sum_{\mu} & j_{\alpha} \\
v_{\alpha+1, \mu}(l) v_{\mu, \alpha+1}(q)\left(\hbar \bar{\omega}-\epsilon_{\mu}+\epsilon_{\alpha}-\hbar \omega_{q}\right)^{-1} \\
& \quad-j_{\alpha} v_{\alpha, \alpha}(l) v_{\alpha+1, \alpha+1}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha+1}+\epsilon_{\alpha}+\hbar \omega_{q}\right)^{-1} \\
& \quad-j_{\alpha} v_{\alpha+1, \alpha+1}(l) v_{\alpha, \alpha}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha+1}+\epsilon_{\alpha}-\hbar \omega_{q}\right)^{-1} \\
& \quad+\sum_{\mu} j_{\alpha} v_{\mu, \alpha}(l) v_{\alpha, \mu}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha+1}+\epsilon_{\mu}+\hbar \omega_{q}\right)^{-1}
\end{array}\right] \begin{aligned}
\tilde{Y}_{2}^{1}(q) \equiv-j_{\alpha}^{*} v_{\alpha+1, \alpha}(l) v_{\alpha+1, \alpha}(q)\left(\hbar \bar{\omega}+\hbar \omega_{q}\right)^{-1}-j_{\alpha}^{*} v_{\alpha+1, \alpha}(l) v_{\alpha+1, \alpha}(q)\left(\hbar \bar{\omega}-\hbar \omega_{q}\right)^{-1} \\
\tilde{Y}_{3}^{1}(q) \equiv-j_{\alpha} v_{\alpha, \alpha+1}(l) v_{\alpha, \alpha+1}(q)\left(\hbar \bar{\omega}+\hbar \omega_{q}\right)^{-1}-j_{\alpha} v_{\alpha+1, \alpha}(l) v_{\alpha, \alpha+1}(q)\left(\hbar \bar{\omega}-\hbar \omega_{q}\right)^{-1} \tag{3.20}
\end{aligned}
$$

$$
\begin{align*}
\tilde{Y}_{4}^{1}(q) \equiv \sum_{\mu} & j_{\alpha}^{*} \\
& v_{\alpha, \mu}(l) v_{\mu, \alpha}(q)\left(\hbar \bar{\omega}-\epsilon_{\mu}+\epsilon_{\alpha+1}-\hbar \omega_{q}\right)^{-1} \\
& -j_{\alpha}^{*} v_{\alpha+1, \alpha+1}(l) v_{\alpha, \alpha}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\alpha+1}+\hbar \omega_{q}\right)^{-1} \\
& -j_{\alpha}^{*} v_{\alpha, \alpha}(l) v_{\alpha+1, \alpha+1}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\alpha+1}-\hbar \omega_{q}\right)^{-1} \tag{3.21}\\
& +\sum_{\mu} j_{\alpha}^{*} v_{\mu, \alpha+1}(l) v_{\alpha+1, \mu}(q)\left(\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\mu}+\hbar \omega_{q}\right)^{-1}
\end{align*}
$$

where $\delta E_{\alpha} \equiv\left(\epsilon_{\alpha+1}-\epsilon_{\alpha}\right)$ and $\delta f_{\alpha} \equiv\left(f_{\alpha+1}-f_{\alpha}\right) ; f_{\alpha}$ is the Fermi distribution. We substitute the above elements into equations (3.12) and (3.14), and obtain the conductivity and the functions of the relaxation factors, as

$$
\begin{align*}
& \sigma_{z z}(\bar{\omega})=\sum_{\alpha}\left(\frac{\mathrm{i}}{\bar{\omega}}\right) j_{\alpha}\langle Z(\bar{\omega})\rangle_{\alpha}+\sum_{\alpha}\left(\frac{\mathrm{i}}{\bar{\omega}}\right) j_{\alpha}^{*}\langle\langle Z(\bar{\omega})\rangle\rangle_{\alpha} \tag{3.22}\\
& \langle Z(\omega)\rangle_{\alpha}=\frac{j_{\alpha} \delta f_{\alpha}}{\hbar\left(\bar{\omega}-\omega_{\alpha}\right)+\hbar \bar{\omega} \Gamma_{P}} \tag{3.23}\\
& \langle\langle Z(\omega)\rangle\rangle_{\alpha}=\frac{-j_{\alpha}^{*} \delta f_{\alpha}}{\hbar\left(\bar{\omega}+\omega_{\alpha}\right)+\hbar \bar{\omega} \Gamma_{Q}} \tag{3.24}
\end{align*}
$$

where

$$
\begin{align*}
\Gamma_{P}=\sum_{q} \frac{1}{j_{\alpha}} & \left\{2\left(\frac{1}{\hbar \bar{\omega}}\right)^{3}\left[-2 j_{\alpha}^{*} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)\right] \delta E_{\alpha}\right. \\
& -2 \frac{(1 / \hbar \bar{\omega})^{2} \delta E_{\alpha}^{2}}{\hbar \bar{\omega}+\delta E_{\alpha}}\left[-\frac{j_{\alpha}^{*} v_{\alpha+1, \alpha}(q) v_{\alpha+1, \alpha}(q)}{\hbar \bar{\omega}+\hbar \omega_{q}}-\frac{j_{\alpha}^{*} v_{\alpha+1, \alpha}(q) v_{\alpha+1, \alpha}(q)}{\hbar \bar{\omega}-\hbar \omega_{q}}\right] \\
& +\left(\frac{1}{\hbar \bar{\omega}}\right) \sum_{\mu} \frac{j_{\alpha} v_{\alpha+1, \mu}(q) v_{\mu, \alpha+1}(q)}{\hbar \bar{\omega}-\epsilon_{\mu}+\epsilon_{\alpha}-\hbar \omega_{q}}-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha} v_{\alpha, \alpha}(q) v_{\alpha+1, \alpha+1}(q)}{\hbar \omega-\epsilon_{\alpha+1}+\epsilon_{\alpha}+\hbar \omega_{q}} \\
& -\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha} v_{\alpha+1, \alpha+1}(q) v_{\alpha, \alpha}(q)}{\hbar \omega-\epsilon_{\alpha+1}+\epsilon_{\alpha}-\hbar \omega_{q}}+\left(\frac{1}{\hbar \bar{\omega}}\right) \sum_{\mu} \frac{j_{\alpha} v_{\mu, \alpha}(l) v_{\alpha, \mu}(q)}{\hbar \bar{\omega}-\epsilon_{\alpha+1}+\epsilon_{\mu}+\hbar \omega_{q}} \\
& \left.-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha}^{*} v_{\alpha+1, \alpha}(q) v_{\alpha+1, \alpha}(q)}{\hbar \bar{\omega}+\hbar \omega_{q}}-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha}^{*} v_{\alpha+1, \alpha}(q) v_{\alpha+1, \alpha}(q)}{\hbar \bar{\omega}-\hbar \omega_{q}}\right\} \tilde{N}_{q} \tag{3.25}
\end{align*}
$$

and

$$
\begin{align*}
\Gamma_{Q}=\sum_{q} \sum_{\alpha} & \frac{1}{j_{\alpha}^{*}}\left\{2\left(\frac{1}{\hbar \bar{\omega}}\right)^{3}\left[-2 j_{\alpha} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)\right] \delta E_{\alpha}\right. \\
& +2 \frac{(1 / \hbar \bar{\omega})^{2} \delta E_{\alpha}^{2}}{\hbar \bar{\omega}+\delta E_{\alpha}}\left[-\frac{j_{\alpha} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)}{\hbar \bar{\omega}-\hbar \omega_{q}}-\frac{j_{\alpha} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)}{\hbar \bar{\omega}-\hbar \omega_{q}}\right] \\
& +\left(\frac{1}{\hbar \bar{\omega}}\right) \sum_{\mu} \frac{j_{\alpha}^{*} v_{\alpha, \mu}(q) v_{\mu, \alpha}(q)}{\hbar \bar{\omega}-\epsilon_{\mu}+\epsilon_{\alpha+1}-\hbar \omega_{q}}-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha}^{*} v_{\alpha+1, \alpha+1}(q) v_{\alpha, \alpha}(q)}{\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\alpha+1}+\hbar \omega_{q}} \\
& -\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha}^{*} v_{\alpha, \alpha}(q) v_{\alpha+1, \alpha+1}(q)}{\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\alpha+1}-\hbar \omega_{q}}+\left(\frac{1}{\hbar \bar{\omega}}\right) \sum_{\mu} \frac{j_{\alpha}^{*} v_{\mu, \alpha+1}(q) v_{\alpha+1, \mu}(q)}{\hbar \bar{\omega}-\epsilon_{\alpha}+\epsilon_{\mu}+\hbar \omega_{q}} \\
& \left.-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)}{\hbar \bar{\omega}+\hbar \omega_{q}}-\left(\frac{1}{\hbar \bar{\omega}}\right) \frac{j_{\alpha} v_{\alpha, \alpha+1}(q) v_{\alpha, \alpha+1}(q)}{\hbar \bar{\omega}-\hbar \omega_{q}}\right\} \tilde{N}_{q} . \tag{3.26}
\end{align*}
$$

Here Γ_{P} and Γ_{Q} are functions of the lineshape which contain the line shift and line half width in a resonant system. The first, second, seventh and eighth terms of equations (3.25) and (3.26)
do not appear in other theories $[6,10]$. These correction terms may give rise to some interesting effects, particularly in a low-dimensional quantum system.

4. Conclusion

In this paper, we have introduced a method of deriving a conductivity formula which includes the relaxation function in a quasi-two-dimensional system. We used an operator algebra technique for the expansion of the propagators which are included in the conductivity tensor. Following the usual projection technique, we expanded the relaxation factors contained in the conductivity tensor with the help of projectors and obtained Lorentz-like formulae. A parabolic confinement potential was chosen.

We showed how to calculate the relaxation function using projectors. We expanded the propagators via a series of diagonal projectors as is commonly performed in quantum transport theories $[6,10]$. The properties of the projection operators in this system are quite different from the case of three-dimensional conductivity.

Through systematically using projection operators, we have derived the useful relation of equation (3.12). Using this relation and systematically calculating the matrix elements, we obtained a conductivity formalism comprising functions of relaxation factors. These functions contain the line shift and line half width in the resonant system. The first, second, seventh and eighth terms of equations (3.25) and (3.26) do not appear in other theories [10]. These terms are expected to play an effective role in low-dimensional quantum systems. The origin of these terms is from the properties of our projection operators in this system.

Acknowledgments

This research has been supported by the Korean Research Foundation (Krf-2000-015-DP0122) and the Brain Korea 21 Project in 2001. The work of JK has been supported by the Korean Research Foundation (Krf-2000-Y00070).

References

[1] Barker J R 1973 J. Phys. C: Solid State Phys. 62633
Barker J R 1978 Solid-State Electron. 21261
Barker J R and Ferry D K 1980 Solid-State Electron. 23531
[2] Zwanzig R W 1961 Lectures in Theoretical Physics vol 3, ed W E Downs and J Downs (New York: Interscience) Zwanzig R W 1966 Lectures in Quantum Statistical Mechanics (New York: Gordon and Breach)
[3] Kubo R 1957 J. Phys. Soc. Japan 12570
[4] Mori H 1965 Prog. Theor. Phys. 34399 Tokuyama M and Mori H 1975 Prog. Theor. Phys. 552
[5] Nagano K, Karasudani T and Okamoto H 1980 Prog. Theor. Phys. 631904
[6] Argres P N and Sigel J L 1973 Phys. Rev. Lett. 311397
[7] Suzuki A and Dunn D 1982 Phys. Rev. B 257754 Suzuki A and Dunn D 1969 Phys. Rev. B 2559 Fujita S and Hirota R 1968 Phys. Rev. 1186 Fujita S 1959 Phys. Rev. 1151335 Fujita S 1976 J. Math. Phys. 171501
[8] Grigoglini P and Parravidini G P 1982 Phys. Rev. B 1255180
[9] Kenkre V M 1971 Phys. Rev. A 42327 Kenkre V M 1972 Phys. Rev. A 6769 Kenkre V M 1973 Phys. Rev. A 7772
[10] Choi S D and Chung O H 1983 Solid State Commun. 46717 Yi S N, Ryu J Y, Chung O H, Sug J Y and Choi S D 1987 Nuovo Cimento D 9927

Lee Y J, Choi S D, Yi S N 1994 J. Korean Phys. Soc. 27195
Ryu J Y, Yi S N and Choi S D 1990 J. Phys. C: Solid State Phys. 23515
Youn Ju Lee, Cho Y J, Choi C H, Joung Young Sug and Choi S D 1995 Z. Phys. B 98 55-8
Kang N L, Cho Y J and Choi S D 1996 J. Korean Phys. Soc. 29628
[11] Joung Young Sug, Sang Gyu Jo and Sang Don Choi 1999 Phys. Rev. E 606538
Joung Young Sug, Sang Gyu Jo and Sang Don Choi 1999 Prog. Theor. Phys. 102789
Joung Young Sug, Sang Gyu Jo and Sang Don Choi 1999 J. Korean Phys. Soc. 34135
[12] Joung Young Sug and Sang Don Choi 1997 Phys. Rev. E 55314

